385 research outputs found

    Neuro imaging research lab

    Get PDF
    poste

    3D tensor normalization for improved accuracy in DTI tensor registration methods

    Get PDF
    pre-printThis paper presents a method for normalization of diffusion tensor images (DTI) to a xed DTI template, a pre-processing step to improve the performance of full tensor based registration methods. The proposed method maps the individual tensors of the subject image in to the template space based on matching the cumulative distribution function and the fractional anisotrophy values. The method aims to determine a more accurate deformation field from any full tensor registration method by applying the registration algorithm on the normalized DTI rather than the original DTI. The deformation field applied to the original tensor images are compared to the deformed image without normalization for 11 different cases of mapping seven subjects (neonate through 2 years) to two different atlases. The method shows an improvement in DTI registration based on comparing the normalized fractional anisotropy values of major fiber tracts in the brain

    Segmentation of serial MRI of TBI patients using personalized atlas construction and topological change estimation

    Get PDF
    pre-printTraumatic brain injury (TBI) due to falls, car accidents, and warfare affects millions of people annually. Determining personalized therapy and assessment of treatment efficacy can substantially benefit from longitudinal (4D) magnetic resonance imaging (MRI). In this paper, we propose a method for segmenting longitudinal brain MR images with TBI using personalized atlas construction. Longitudinal images with TBI typically present topological changes over time due to the effect of the impact force on tissue, skull, and blood vessels and the recovery process. We address this issue by defining a novel atlas construction scheme that explicitly models the effect of topological changes. Our method automatically estimates the probability of topological changes jointly with the personalized atlas. We demonstrate the effectiveness of this approach on MR images with TBI that also have been segmented by human raters, where our method that integrates 4D information yields improved validation measures compared to temporally independent segmentations

    Abnormal vessel tortuosity as a marker of treatment response of malignant gliomas: preliminary report

    Get PDF
    pre-printDespite multiple advances in medical imaging, noninvasive monitoring of therapeutic efficacy for malignant gliomas remains problematic. An underutilized observation is that malignancy induces characteristic abnormalities of vessel shape. These characteristic shape abnormalities affect both capillaries and much larger vessels in the tumor vicinity, involve larger vessels prior to sprout formation, and are generally not present in hypervascular benign tumors. Vessel shape abnormalities associated with malignancy thus may appear independently of increase in vessel density. We hypothesize that an automated, computerized analysis of vessel shape as defined from high-resolution MRA can provide valuable information about tumor activity during the treatment of malignant gliomas. This report describes vessel shape properties in 10 malignant gliomas prior to treatment, in 2 patients in remission during treatment, and in 2 patients with recurrent disease. One subject was scanned multiple times. The method involves an automated, statistical analysis of vessel shape within a region of interest for each tumor, normalized by the values obtained from the vessels within the same region of interest of 34 healthy subjects. Results indicate that untreated tumors display statistically significant vessel tortuosity abnormalities. These abnormalities involve vessels not only within the tumor margins as defined from MR but also vessels in the surrounding tissue. The abnormalities resolve during effective treatment and recur with tumor recurrence. We conclude that vessel shape analysis could provide an important means of assessing tumor activity

    Modeling 4D changes in pathological anatomy using domain adaptation: analysis of TBI imaging using a tumor database

    Get PDF
    pre-printAnalysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our frame-work uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain

    Analyzing imaging biomarkers for traumatic brain injury using 4D modeling of longitudinal MRI

    Get PDF
    pre-printQuantitative imaging biomarkers are important for assessment of impact, recovery and treatment efficacy in patients with traumatic brain injury (TBI). To our knowledge, the identification of such biomarkers characterizing disease progress and recovery has been insufficiently explored in TBI due to difficulties in registration of baseline and followup data and automatic segmentation of tissue and lesions from multimodal, longitudinal MR image data. We propose a new methodology for computing imaging biomarkers in TBI by extending a recently proposed spatiotemporal 4D modeling approach in order to compute quantitative features of tissue change. The proposed method computes surface-based and voxel-based measurements such as cortical thickness, volume changes, and geometric deformation. We analyze the potential for clinical use of these biomarkers by correlating them with TBI-specific patient scores at the level of the whole brain and of individual regions. Our preliminary results indicate that the proposed voxel-based biomarkers are correlated with clinical outcomes

    Statistical growth modeling of longitudinal DT-MRI for regional characterization of early brain development

    Get PDF
    pre-printA population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI

    Assessment of reliability of multi-site neuroimaging via traveling phantom study

    Get PDF
    pre-printThis paper describes a framework for quantitative analysis of neuroimaging data of traveling human phantoms used for cross-site validation. We focus on the analysis of magnetic resonance image data including intra- and intersite comparison. Locations and magnitude of geometric deformation is studied via unbiased atlas building and metrics on deformation fields. Variability of tissue segmentation is analyzed by comparison of volumes, overlap of tissue maps, and a new Kullback-Leibler divergence on tissue probabilities, with emphasis on comparing probabilistic rather than binary segmentations. We show that results from this information theoretic measure are highly correlated with overlap. Reproducibility of automatic, atlas-based segmentation of subcortical structures is examined by comparison of volumes, shape overlap and surface distances. Variability among scanners of the same type but also differences to a different scanner type are discussed. The results demonstrate excellent reliability across multiple sites that can be achieved by the use of the today's scanner generation and powerful automatic analysis software. Knowledge about such variability is crucial for study design and power analysis in new multi-site clinical studies. Keywords: Multi-site neuroimaging study, validation, traveling phantom, automatic segmentation, cross-site validation

    Brain Changes in Traumatic Brain Injury

    Get PDF
    poste

    Spatiotemporal modeling of distribution-valued data applied to DTI tract evolution in infant neurodevelopment

    Get PDF
    pre-printThis paper proposes a novel method that extends spatiotemporal growth modeling to distribution-valued data. The method relaxes assumptions on the underlying noise models by considering the data to be represented by the complete probability distributions rather than a representative, single-valued summary statistics like the mean. When summarizing by the latter method, information on the underlying variability of data is lost early in the process and is not available at later stages of statistical analysis. The concept of 'distance' between distributions and an 'average' of distributions is employed. The framework quantifies growth trajectories for individuals and populations in terms of the complete data variability estimated along time and space. Concept is demonstrated in the context of our driving application which is modeling of age-related changes along white matter tracts in early neurodevelopment. Results are shown for a single subject with Krabbe's disease in comparison with a normative trend estimated from 15 healthy controls
    • …
    corecore